Ende dieses Seitenbereichs.

Beginn des Seitenbereichs: Inhalt:

Ab in den Speicher

Donnerstag, 10.07.2014, uni.on > Forschen, Universität, uni.on > Top News, Forschen, Naturwissenschaften

Wissenschafter der Uni Graz entschlüsseln Mechanismus, wie sich Zellen vor zu viel Fettsäure schützen

Biologische Membranen sind nicht dicker als die Hülle einer Seifenblase – und trotzdem von lebenswichtiger Bedeutung: 10.000 Mal dünner als ein menschliches Haar, umgeben sie die Zellen und wirken als physiologische Barriere. Sie steuern somit auch den Austausch zwischen Innen- und Außenwelt der Körperzellen. Unser Wohlbefinden hängt wesentlich davon ab, ob sie richtig funktionieren. Eine zentrale Rolle spielt dabei die Regulation von Fettsäureaufnahme und -Stoffwechsel. Wie Membranen auf ein Zuviel an Fettsäure reagieren, hat die Arbeitsgruppe von Univ.-Prof. Dr. Sepp-Dieter Kohlwein am Institut für Molekulare Biowissenschaften der Karl-Franzens-Universität Graz nun herausgefunden. Es wird ein Mechanismus in Gang gesetzt, der dafür sorgt, dass die Membranfett-Synthese so adaptiert wird, dass das Überleben der Zellen gewährleistet ist. Die bedeutsamen Erkenntnisse wurden am 23. Juni 2014 im hochrangigen Fachmagazin Developmental Cell publiziert.

 

Fette kommen im Körper in den verschiedensten Zusammensetzungen vor und erfüllen eine Vielzahl an Funktionen. So besteht zum Beispiel das Grundgerüst aller Membranen, welche die Zellen umgeben, aus einer hoch komplexen Mischung von Fettstoffen, von denen Cholesterin und Lecithin allgemein bekannte Vertreter sind. Membran-bildende Fette und Speicherfette, die sich bisweilen an Bauch und Hüften unangenehm bemerkbar machen, werden unter anderem aus Fettsäuren aufgebaut. Diese stammen entweder aus der Nahrung oder werden von Körperzellen selbst gebildet. Ist das fein abgestimmte Gleichgewicht gestört, kann es zu Stoffwechselstörungen wie Adipositas und Diabetes Typ 2 kommen.

 

Das Team um Univ.-Prof. Dr. Sepp-Dieter Kohlwein hat nun einen speziellen Mechanismus entschlüsselt, mit welchem Zellen auf erhöhte Fettsäureproduktion reagieren. Im Modellsystem Hefe konnten die Forscher zeigen, dass die vermehrte Bildung von Fettsäuren zu einem Anstieg der Speicherfette führt, während die Membranfette überraschenderweise nicht in ihrer Menge, sondern nur in ihrer Zusammensetzung verändert werden. Die Membranfett-Synthese wird entsprechend angepasst, um die Membranfunktion aufrecht zu erhalten und somit das Überleben der Zellen zu sichern.

„Daraus lässt sich die Schlussfolgerung ziehen, dass Fettpölsterchen nicht nur unangenehme Nebenerscheinung übermäßiger Nahrungsaufnahme sind. Vielmehr übernehmen sie eine lebenswichtige Funktion, indem sie einen Überfluss an Fettsäuren abpuffern“, so Kohlwein. „Da zwischen Membran- und Speicherfetten eine enge physiologische Wechselbeziehung besteht, können Störungen im Speicherfettstoffwechsel große Auswirkungen auf die Zusammensetzung und Funktion der Zellmembranen haben“, ergänzt Dr. Harald Hofbauer. Wird die empfindliche Balance zwischen Speicher- und Membranfetten gestört, kann dies zur Entstehung von Herzkreislauf-Erkrankungen oder Krebs beitragen.

 

Einen wichtigen Beitrag erbrachte die Arbeitsgruppe von Univ.-Prof. Dr. C. Oliver Kappe am Institut für Chemie, die ein nicht-käufliches Molekül herstellte, mit welchem der neu aufgeklärte Mechanismus bestätigt werden konnte. Die aktuelle Publikation entstand im Rahmen des vom Wissenschaftsfonds FWF geförderten Spezialforschungsbereichs LIPOTOX (http://lipotox.uni-graz.at), der an der Uni Graz koordiniert wird.

Die beteiligten WissenschafterInnen sind in den Forschungsschwerpunkt „Molekulare Enzymologie und Physiologie“ der Karl-Franzens-Universität sowie in die Kooperationen NAWI Graz und BioTechMed-Graz eingebettet.

 

Publikation:

Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids

Harald F. Hofbauer, Florian H. Schopf, Hannes Schleifer, Oskar L. Knittelfelder, Bartholomäus Pieber, Gerald N. Rechberger, Heimo Wolinski, Maria L. Gaspar, C. Oliver Kappe, Johannes Stadlmann, Karl Mechtler, Alexandra Zenz, Karl Lohner, Oksana Tehlivets, Susan A. Henry, Sepp D. Kohlwein

Ende dieses Seitenbereichs.

Beginn des Seitenbereichs: Zusatzinformationen:

Ende dieses Seitenbereichs.